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Non-commutative analogues ofq-special polynomials and a
q-integral on a quantum sphere
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† ISTV, Universit́e de Valenciennes, 59304 Valenciennes, France
‡ International Solomon University, Zabolotny Street, 38, apt. 61, Kiev 252187, Ukraine

Received 4 November 1997

Abstract. q-Legendre polynomials can be treated as some special ‘functions in the quantum
double cosetsU(1)\SUq(2)/U(1)’. They form a family (depending on a parameterq) of
polynomials in one variable. We get their further generalization by introducing a two-parameter
family of polynomials. If the former family arises from an algebra which is in a sense
‘q-commutative’, the latter one is related to its non-commutative counterpart. We also introduce
a two-parameter deformation of the invariant integral on a quantum sphere.

1. Introduction

It is well known that the classical Legendre polynomials form a basis in the function space
on the double cosetsU(1)\SU(2)/U(1) [Vi]. Although q-analogues of these polynomials
(as well as those of some other special functions) have been known for a long time, it became
clear only recently that they can be treated as ‘functions on quantum double cosets’.

This approach suggested in [VS] for thesl(2) case (cf also [KN]) and developed by
a number of authors for other quantum double cosets (cf., for example, survey [Va]) can
be represented as follows. Let us consider the function space Funq(S

2) on the quantum
sphere. This space can be defined as in the spirit of [P] as the subspace of left (or right)
U(1)-invariant functions onSUq(2) (the groupU(1) can be treated as a commutative and
cocommutative Hopf subalgebra ofSUq(2)).

For a genericq the space Funq(S2) can be decomposed into a direct sum⊕Vi , i =
0, 1, . . . of irreducibleUq(su(2))-modulesVi , wherei is the spin (note that dimVi = 2i+1).
Let v be a generator of the subalgebra of Funq(S

2) formed by two-sidedU(1)-invariant
functions. Then thekth q-Legendre polynomial can be defined as a polynomial inv
belonging to the componentVk. In fact, the q-Legendre polynomials are nothing but
eigenfunctions of the quantum Casimir operator.

It should be noted that the algebra Funq(S
2), which plays a crucial role in the

constructions of [VS], is a particular case of a two-parameter family ofUq(su(2))-invariant
(in the sense explained in section 2) associative algebras (meanwhile, the algebra Funq(S

2)

itself depends only on the parameterq assuming that the parameterc labelling the orbits is
fixed, see later).

This two-parameter family arises from a quantization of the Poisson pencil generated by
the Kirillov–Kostant–Souriau (KKS) bracket on the usual sphere and the so-calledR-matrix
bracket (see section 6 for the definition).
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1772 D Gurevich and L Vainerman

The quantization of theR-matrix bracket leads to the algebra Funq(S
2) which plays the

role of ‘commutative algebra’ in the category ofUq(sl(2))-invariant algebras. The passage
to the two-parameter family mentioned above is a way to a ‘q-noncommutative’ analysis.
Our main aim is to apply the above approach to this family. More precisely, we introduce
(h̄, q)-special polynomials as eigenfunctions of the quantum Casimir operator acting on this
two-parameter family.

Moreover, we introduce as in [NM], a certain(h̄, q)-analogue of the invariant integral
on the sphere (the authors of [NM] deal with aq-analogue of the integral which is defined
on the algebra Funq(S2)). Finally, we give an explicit expression for this(h̄, q)-integral
which is a generalization of the well known Jackson integral (cf, for example, [VS], [KN]).

Throughout this paper, the basic field isC andq ∈ C is assumed to be generic. Thus,
we deal with the groupSL(2,C), the complexification of the sphere and their quantum
counterparts rather then with compact objects themselves: the reason for this is explained
in section 4.

The paper is organized as follows. In section 2 we define our basic object: a function
algebra on a quantum hyperboloid. In section 3 we compute the action of the quantum
Casimir operator on the elements of this algebra.

In section 4 we define(h̄, q)-special polynomials in the above algebra.
Section 5 is devoted to introducing an(h̄, q)-analogue of the invariant integral on a

sphere. In section 6 we discuss the considered objects in the framework of deformation
quantization. There we also explain in what sense we use the terma q-commutative algebra.

2. Basic objects: the algebraAc
h,q

Let us consider the quantum enveloping algebraUq(sl(2)), i.e. an algebra generated by
elementsE+, E−, X, Y satisfying the following relations:

E±X = q±1XE± E±Y = q∓1YE± E+E− = E−E+ = 1

[X, Y ] = E2
+ − E2

−
q − q−1

whereq 6= 0, q2 6= 1, equipped with the coproduct

1(X) = E− ⊗X +X ⊗ E+ 1(Y) = E− ⊗ Y + Y ⊗ E+ 1(E±) = E± ⊗ E±
and some antipode whose explicit form we do not need.

One can verify that the element, called thequantum Casimir operatoror simply quantum
Casimir,

K = q

2
(XY + YX)+ q

2(1+ q2)

2(1− q2)2
(E2
+ + E2

− − 2)

belongs to the centre of the above algebra.
It is well known that the image of the quantum Casimir in any irredicibleUq(sl(2))-

module is a scalar operator. Let us denote byλk, k = 0, 1/2, 1, . . ., its eigenvalue
corresponding to an irreducible spink Uq(sl(2))-moduleVk. We will show later that

λk = (q2k − 1)(q2(k+1) − 1)

q2k−2(q2− 1)2
. (1)

Now, let us consider a three-dimensionalUq(sl(2))-moduleV = V1 such that the
representationρq : Uq(sl(2)) → End(V ) coincides with the classical oneρ:U(sl(2)) →
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End(V ) as q = 1. Let us fix a basis{u, v,w} in V such that the above action of the
quantum group is given by (we omit the symbolρq in our notation):

E±u = q±1u E±v = v E±w = q∓1w Xu = 0 Xv = −(q + q−1)u

Xw = v Yu = −v Yv = (q + q−1)w Yw = 0.

By the coproduct, we can equipV ⊗2 with a Uq(sl(2))-module structure as well. This
module is reducible and can be decomposed into a direct sum of three irreducibleUq(sl(2))-
modules

V0 = span

{
(q2+ 1)uw + vv + q

2+ 1

q2
wu

}
V1 = span{q2uv − vu, (q2+ 1)(uw − wu)+ (1− q2)vv,−q2vw + wv}
V2 = span{uu, uv + q2vu, q−1uw − qvv + q3wu, vw + q2wv,ww}

of spins 0,1,2, respectively (hereafter the sign⊗ is omitted).
Then only the following relations imposed on the elements of the spaceV ⊗2⊕V ⊕C

are consistent with the above action ofUq(sl(2)):

Cq = (q2+ 1)uw + vv + q
2+ 1

q2
wu = c

q2uv − vu = −h̄u
(q2+ 1)(uw − wu)+ (1− q2)vv = h̄v
−q2vw + wv = h̄w

with arbitraryh̄ andc. The elementCq is calleda braided Casimir.
Let us denoteAch,q the quotient algebra of a free tensor algebraT (V ) by the ideal

generated by the elements

(q2+ 1)uw + vv + q
2+ 1

q2
wu− c q2uv − vu+ h̄u

(q2+ 1)(uw − wu)+ (1− q2)vv − h̄v − q2vw + wv − h̄w.

Remark 1. Here h̄ and q are assumed to be fixed. If we want to consider them
as formal parameters, we must replaceT (V ) in the definition of the algebraAch,q by
T (V )⊗ C[[h̄, q, q−1]]. The parameterc which labels the orbits is always fixed. The case
c = 0 corresponds to the cone.

If q = 1, h̄ = 0, we get a family (parametrized by the parameterc which labels the
orbits) of usual hyperboloids considered as orbits insl(2)∗. If q = 1, h̄ 6= 0, we get
its non-commutative analogue but it still lives in the classical category ofsl(2)-invariant
algebras.

If q 6= 1, we get a two-parameter family ofUq(sl(2))-invariant algebras. Let us recall
that an associative algebraA is calledUq(g)-invariant (or covariant) if

X ◦ (a ⊗ b) = ◦1X(a ⊗ b) ∀X ∈ Uq(g), a, b ∈ A
where◦ is the product inA.

In fact, the Podles’ quantum spheres are exactly these quantum hyperboloids equipped
with an involution. Here, we would like to avoid a discussion of the problem of a proper
definition of an involution in braided categories (it has been discussed in [DGR1]) and
prefer to work with complex objects.
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The particular case ¯h = 0 of this family corresponds to aq-commutative algebra in the
sense discussed in section 6.

Let us rewrite the above equations as follows:

(q2+ 1)uw + ṽ2+ q
2+ 1

q2
wu = c̃ − 2aṽ

q2uṽ − ṽu = 0

(q2+ 1)(uw − wu)+ (1− q2)ṽ2 = −h̄ṽ
−q2ṽw + wṽ = 0

wherea = h̄(1− q2)−1, c̃ = c − a2, ṽ = v − a.
By these relations we can express the productuw in terms of the variablẽv:

uw = (q2+ 1)−2[c̃q2− a(1+ q2)ṽ − ṽ2]. (2)

We will apply this formula later.

3. Action of the quantum Casimir

Our next aim is to obtain a formula forKṽk for every naturalk, whereṽk = ṽ⊗k.
It is clear from the very beginning that the action ofE2

++E2
−−2 on ṽk equals zero. On

the other hand, from the relation of commutation forX, Y it is also clear that the actions
of XY andYX on ṽk coincide.

Thus, we have

Kṽk = qYXṽk.
By the formulae for the coproduct and for the action ofX,E+, E− on ṽ, as well as the

formula of commutation ofv and ṽ, we have

Xṽk = (XEk−1
+ + E−XEk−2

+ + · · · + Ek−1
− X)ṽk

= − q
2+ 1

q
(uṽk−1+ ṽuṽk−2+ · · · + ṽk−1u)

= − q
2+ 1

q
(1+ q2+ · · · + q2(k−1))uṽk−1 = −αk(q)uṽk−1

with

αk(q) = (q2+ 1)(q2k − 1)

q(q2− 1)
.

Hereafter byXEk−1
+ ṽk we meanXṽ(E+ṽ)k−1 etc.

Similarly, in virtue of the formula (2) we get

YXṽk = −αk(q)(YEk−1
+ + E−YEk−2

+ + · · · + Ek−1
− Y )uṽk−1

= − αk(q)
[
−(ṽ + a)ṽk−1+ q

2+ 1

q2
(uwṽk−2+ uṽwṽk−3+ · · · + uṽk−2w)

]
= αk(q)

[
ṽk + aṽk−1− q

2+ 1

q2
(1+ q−2+ · · · + q−2(k−2))uwṽk−2

]
= αk(q)

[
ṽk + aṽk−1+ q−2(k−1) − 1

q2(q2+ 1)(q−2− 1)
(ṽ2+ a(q2+ 1)ṽ − c̃q2)ṽk−2

]
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= αk(q)
[
ṽk+aṽk−1+ q2(k−1) − 1

q2(k−1)(q2+1)(q2−1)
(ṽk+a(q2+ 1)ṽk−1−c̃q2ṽk−2)

]
= βk(q)

[
q2(k+1) − 1

q2− 1
ṽk + a(q2+ 1)

q2k − 1

q2− 1
ṽk−1− c̃q2q

2(k−1) − 1

q2− 1
ṽk−2

]
with

βk(q) = αk(q)

q2(k−1)(q2+ 1)
= q2k − 1

q2k−1(q2− 1)

(we assume that̃v−1 = ṽ−2 = 0).
Thus, we have established the following.

Proposition 1.

Kṽk = qβk(q)
[
q2(k+1) − 1

q2− 1
ṽk + a(q2+ 1)

q2k − 1

q2− 1
ṽk−1− c̃q2q

2(k−1) − 1

q2− 1
ṽk−2

]
.

Remark 2. This proposition generalizes proposition 6.2 from [VS]. However, in order to
represent it in a form similar to that from [VS], let us introduce the notion of right and left
q-differencefor a functionf (z) (z ∈ C) as follows:

δ+qf (z) := f (z)− f (qz)
z− qz δ−qf (z) := f (z)− f (q−1z)

z− q−1z
.

In particular, forf (z) = zk we have

δ+q2zk = zk−1q
2k − 1

q2− 1
δ−q2zk = zk−1 q2k − 1

q2(k−1)(q2− 1)
.

By this notation, we can rewrite the above formula for the action of the Casimir as follows:

Kṽk = q2k − 1

q2(k−1)(q2− 1)
δ+q2[(ṽ2+ a(q2+ 1)ṽ − c̃q2)ṽk−1]

= [δ+q2(ṽ2+ a(q2+ 1)ṽ − c̃q2)δ−q2]ṽk

= δ+q2

(
ṽ2+ h1+ q2

1− q2
ṽ − c̃q2

)
δ−q2ṽk.

Thus, the action of the Casimir operator on any polynomial inṽ can be expressed in
terms of theq2-difference operator of second order.

4. (h̄, q)-special polynomials

It is well known that the function algebraAc0,1 on a usual hyperboloid considered as an
algebraic variety insl(2)∗ is a direct sum of all integer spin irreduciblesl(2)-modulesVk.
This property is also valid for its non-commutative analogueAch,1. It is also true ifq is
generic for aUq(sl(2))-invariant algebraAch,q .

To show this it suffices to check that for any integer spink there exists in the algebra
Ach,q a unique polynomial iñv belonging to the moduleVk (cf [DG], where another method
of proof is given).

This property is ensured by the following.
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Proposition 2. For anyλk, k = 0, 1, 2, . . ., given by the formulae (1) and for a genericq
there exists a unique polynomial of the form

Pk(ṽ) =
k∑

j=0

Akj ṽ
k−j with Ak0 = 1

such that

KPk(ṽ) = λkPk(ṽ).

Proof. Let Pk(ṽ) be such a polynomial.
By proposition 1 we have

KPk(ṽ) =
k∑

j=0

Akj (ak−j ṽ
k−j + bk−j ṽk−j−1+ ck−j ṽk−j−2)

= akṽk + (bk + Ak1ak−1)ṽ
k−1

+
k∑

j=2

(Akj−2ck−j+2+ Akj−1bk−j+1+ Akj ak−j )ṽk−j

where

ak = (q2k − 1)(q2(k+1) − 1)

q2k−2(q2− 1)2
bk = a(q2+ 1)(q2k − 1)2

q2k−2(q2− 1)2

ck = − c̃(q
2k − 1)(q2(k−1) − 1)

q2k−4(q2− 1)2
.

Now the above equality of polynomials gives us the following chain of relations:

ak = λk bk + Ak1ak−1 = Ak1λk
Akj−2ck−j+2+ Akj−1bk−j+1+ Akj ak−j = Akj λk (j = 2, 3, . . . , k).

So, we have the following recurrence relations for findingAkj :

Ak1 =
bk

ak − ak−1

Akj =
Akj−2ck−j+2+ Akj−1bk−j+1

ak − ak−j (j = 2, 3, . . . , k).

It remains to say that the numerators of these formulae are not equal to zero for a
genericq. This completes the proof. �

Let us remark that this approach gives us a description of ‘non-generic’ values ofq:
they are exactly such that the numerators of the above formulae vanish. It should be noted
that these numerators do not contain ¯h and therefore the decompositionAch,q = ⊕Vk is valid
for a genericq independently on ¯h.

We call the above polynomials(h̄, q)-special polynomials. If h̄ = 0 andq = 1, they
coincide with the Legendre polynomials up to a change of the variable and up to factors. A
change of the variable consisting in multiplying the variable by

√−1 is motivated by the
fact that the Legendre polynomials arise from the real compact form of the groupSL(2,C).

Since the Legendre polynomials are even for evenk and odd for oddk, this substitution
leads to polynomials with real coefficients (for an oddk it is necessary also to multiply the
polynomial by

√−1).
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It is still true if h̄ = 0 but q 6= 1. Thus, assumingq to be real, in a similar way we
get the polynomials with real coefficients which differ from theq-Legendre polynomials by
factors (cf [VS], [KN], [Va]) .

However, if h̄ 6= 0 andq 6= 1, the above property is no longer true and the mentioned
procedure does not lead to polynomials with real coefficients.

This is the reason why we do prefer to deal with the complex form of the quantum
hyperboloid.

5. (h̄, q)-integral

Let us introduce in the algebraAch,q an analogue of the invariant integral. It is exactly the
projector in this algebra onto its trivial component.

In what follows we use the notation Int:Ach,q → C for it. If q = 1, h̄ = 0, this operator
coincides up to a factor with the usual invariant integral on a sphere.

In the general case, we call this projector an(h̄, q)-integral.
Our immediate aim is to compute the values Int(ṽk). We use the method of [NM],

where a particular case(h̄ = 0) has been considered.
It is obvious that Int(Yf ) = 0 for any f ∈ Ach,q . This follows from the fact that

Yf ∈ Vk if f ∈ Vk, k 6= 0 andYf = 0 if f ∈ V0.
Let us setf = uṽk. Then, applying again the formula (2), we have

Int(Yuṽk) = (YEk+ + E−YEk−1
+ + · · · + Ek−Y )uṽk

= − (ṽ + a)ṽk + q−1(q + q−1)u(wṽk−1+ ṽwṽk−2+ · · · + ṽk−1w)

= − ṽk+1− aṽk + (1+ q−2)uw(1+ q−2+ · · · + q−2(k−1))ṽk−1

= − ṽk+1− aṽk + (q2− 1)−1(1− q−2k)(1+ q2)−1

×(−ṽ2− a(q2+ 1)ṽ + c̃q2)ṽk−1 = 0.

This implies the following equation

µk+1(q
2k+4− 1)+ µka(q2k+2− 1)(1+ q2)− µk−1(q

2k − 1)q2c̃ = 0

whereµk = Int(ṽk). Now by puttingγk = µk(q2k+2− 1) we have

γk+1+ a(1+ q2)γk − q2c̃γk−1 = 0.

Thus, if we normalize the(h̄, q)-integral by Int(1) = 1 and Int(v) = 0, we have forµk
the following formula:

µk = (q2− 1)(q2k+2− 1)−1(y2x
k
1 − y1x

k
2)(x2− x1)

−1 (3)

whereyi = xi + a(q2+ 1) andx1 andx2 are the roots of the quadratic equation

x2+ a(1+ q2)x − q2c̃2 = 0.

Thus, we have proved the following.

Proposition 3. The (h̄, q)-integral normalized by Int(1) = 1 and Int(v) = 0 is unique and
defined by the formula Int(ṽk) = µk, whereµk is given by (3).

Assuming|q| to be smaller than 1, we can represent this formula as

Int(f ) = (1− q2)(x2− x1)
−1
∞∑
m=0

(y2f (x1q
2m)− y1f (x2q

2m))q2m

wheref is a polynomial inṽ.
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Remark 3. (a) Let us remark that for the polynomialsPk(ṽ)), k > 0 introduced in section 4
we have

Int(Pk(ṽ)Pl(ṽ)) = 0 (k 6= l)
i.e. (h̄, q)-special polynomials are mutually orthogonal with respect to the pairing defined
by the (h̄, q)-integral. This follows from the fact that in the decompositionVk ⊗ Vl into a
direct sum of irreducible components, the trivial component is present if and only ifk = l.

(b) Let us note that neither our formula for(h̄, q)-special polynomials nor that for the
(h̄, q)-integral have any limit asq → 1 if h̄ 6= 0. In the classical case(q = 1) one usually
deals with a family of finite-dimensional representations of the algebrasAch,1. In such a
representation, ‘the(h̄, 1)-integral’ becomes a usual trace (up to a factor).

(c) If h̄ = 0, q 6= 0, the above formula for the(h̄, q)-integral gives the well known
formula for the Jackson integral (cf [VS], [KN]). The relations of orthogonality for(h̄, q)-
special polynomials with respect to the(h̄, q)-integral generalize those forq-Legendre
polynomials with respect to the Jackson integral.

6. Connection with the deformation quantization

In fact, we have shown that the deformationAc0,1 → Ach,q is flat and therefore one can
introduce the corresponding quasiclassical object. This isa Poisson pencil(i.e. a linear
space of Poisson brackets) generated by the KKS bracket and a so-calledR-matrix bracket
well defined on a hyperboloid.

The latter bracket is introduced by{f, g} = µ〈ρ⊗2(R), df ⊗dg〉, whereR is the unique
(up to a factor and an intertwinning) solution of the classicalmodifiedYang–Baxter equation
on the Lie algebrasl(2), ρ is the coadjoint representation restricted to a hyperboloid, and
we use the pairing between vector fields and differential forms (extended onto their tensor
powers)†. µ is the commutative product in the function spaceAc0,1.

Thus, the algebraAch,q can be treated as a quantum object with respect to the above
Poisson pencil. Let us emphasize that the quantization of the only KKS bracket gives
the algebraAch,1 which is still sl(2)-invariant. Let us introduce ansl(2)-morphism
φ : Ac0,1→ Ach,1 by sendinguk ∈ Ac0,1 to uk ∈ Ach,1.

By means of this morphism we can, in the spirit of the deformation quantization theory,
introduce a newsl(2)-invariant associative product in the algebraAc0,1:

a ◦h̄ b = φ−1(φ(a) ◦ φ(b)) a, b ∈ Ac0,1
where◦ is the product in the algebraAch,1. One can see that this quantization is closed in
the sense of [CFS] (this means that the trace in the quantum algebra is exactly an integral
on the initial manifold, in our case such a manifold is a sphere).

Let us remark that a deformation quantization exists for any symplectic Poisson bracket
on any (compact smooth) manifold.

The passageAc0,1 → Ach,1 is a particular case of this deformation quantization scheme
since the KKS bracket is symplectic. It is not the case of theR-matrix bracket: it is not
symplectic and its quantization leads to a deformation of the integral. Although it is easy,
by a method similar to the above, to represent the algebraAch,q asAc0,1 equipped with a
deformed product◦h̄,q , the initial integral onAc0,1 is not any more a trace for this product.

† As for other simple Lie algebrasg such a type of Poisson pencil exists only on some exceptional orbits ing∗
(cf [GP]).
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Thus, the first step of the quantization, i.e. the passageAc0,1 → Ach,1, can be done
without any deformation of the integral. In contrast, the second one, i.e. the further passage
to the algebraAch,q , leads to such a deformation.

Let us explain now in what sense we use the termq-commutativefor the algebra
Ac0,q . In this algebra there exists an involutive(S̃2 = id) operatorS̃: (Ac0,q)

⊗2 → (Ac0,q)
⊗2

which plays the role of the ordinary flip in the algebraAc0,q . It can be derived from
the Yang–Baxter operatorS: it suffices to replace all eigenvalues ofS close to 1
(respectively,−1) by 1 (respectively,−1) keeping all eigenspaces ofS (assuming that
|q − 1| � 1).

Another description of the operatorS̃ is given in [DS]. Using the results of this paper,
one can see that in the algebraAc0,q we havea ◦ b = ◦(S̃(a ⊗ b)) for any two elements
a, b ∈ Ac0,q . In this sense, we say that the algebraAc0,q is q-commutative.

Thus, quantizing the onlyR-matrix bracket, we pass from a commutative algebra to
a q-commutative one. Meanwhile, a simultaneous quantization of the considered Poisson
pencil leads to the algebras which areUq(g)-invariant but are no longerq-commutative.
This gives a simultaneous deformation of the category (instead ofsl(2)-invariant algebras we
getUq(g)-invariant ones) and a passage from ‘commutative’ objects to ‘non-commutative’
ones in the new category.

We consider the final algebraAch,q as an object of twisted quantum mechanics, which
looks like similar objects of super-quantum mechanics. For a more detailed discussion of
this point of view, we refer the reader to [DGR1] and [DGR2].
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